Deformation theory of Fuchsian equations and logarithmic connections
نویسندگان
چکیده
منابع مشابه
Galois theory of fuchsian q-difference equations
We propose an analytical approach to the Galois theory of singular regular linear q-difference systems. We use Tannaka duality along with Birkhoff’s classification scheme with the connection matrix to define and describe their Galois groups. Then we describe fundamental subgroups that give rise to a Riemann-Hilbert correspondence and to a density theorem of Schlesinger’s type.
متن کاملDeformations of Fuchsian Equations
— We prove that the dimension of the deformations of a given generic Fuchsian system without changing the conjugacy class of its local monodromies (“number of accessory parameters”) is equal to half the dimension of the moduli space of deformations of the associated local system. We do this by constructing a weight 1 Hodge structure on the infinitesimal deformations of integrable connections. W...
متن کاملModuli of Semistable Logarithmic Connections
Under the Riemann Hilbert correspondence, which is an equivalence of categories, local systems on a nonsingular complex projective variety X correspond to pairs E = (g' , V) where g' is a locally free sheaf on X , and V: g' -t n ~ 0g' is an integrable connection on g'. Generalizing this correspondence to noncomplete quasi-projective varieties, Oeligne (see [0]) showed that the correct algebro-g...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولFinite-gap Solutions of the Fuchsian Equations
We find a new class of the Fuchsian equations, which have an algebraic geometric solutions with the parameter belonging to a hyperelliptic curve. Methods of calculating the algebraic genus of the curve, and its branching points, are suggested. Numerous examples are given. Introduction Integrability of the Heun equation with half-odd characteristic exponents dy dz + P (z) dy dz +Q(z)y = 0, (0.1)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Scientiarum Mathematicarum Hungarica
سال: 2012
ISSN: 0081-6906,1588-2896
DOI: 10.1556/sscmath.49.2012.4.1215